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ABSTRACT
Statement of problem. Surface treatments (STs) required for micromechanical interlocking can
lead to alterations in the surface characterization and mechanical features of the resin-matrix
ceramics (RMCs), which may jeopardize the long-term outcome of an indirect restoration.
However, evidence on this issue is lacking.

Purpose. The purpose of this in vitro study was to assess the influence of different STs on the
surface roughness (SR), water contact angle (WCA), and flexural strength (FS) of RMCs.

Material and methods. Two hundred rectangular plates (12×14×1 mm) were prepared from 5 different
RMC ingots, including a polymer-infiltrated ceramic network (Vita Enamic [VE]), 2 resin nanoceramics
(Lava Ultimate [LU], Grandio Blocks [GB]), a flexible nanoparticle-filled resin (GC Cerasmart [GC]), and a
reinforced composite resin (Brilliant Crios [BC]). Plates of each RMC group were further divided into 4
subgroups according to the ST applied: Control, no treatment (C); airborne-particle abrasion with
aluminum oxide particles (APA); 2W- and 3W-Er,Cr:YSGG laser irradiations (LI2W, LI3W) (n=10 per ST).
The SR (Ra) of each plate was recorded with a contact profilometer. WCAs (q) of distilled water on the
plates were determined by using the sessile-drop method. The FS (MPa) of each plate was measured
with a universal testing machine. Data acquired for SR, WCA, and FS were statistically analyzed (a=.05).
Weibull statistics were also conducted to determine the reliability of each material.

Results. The 2-way ANOVA showed that SR, WCA, and FS values were significantly influenced not only by
all tested variables but also by their interaction terms (P<.001). All STs significantly increased the SR values
(P<.05). Maximum and minimum SR values were recorded in GC-LI3W (7.06 ±0.16) and GC-C (0.07 ±0.02)
groups. After STs, WCA values significantly diminished (P<.05). Maximum and minimumWCA values were
recorded in LU-C (61.74 ±2.45) and VE-APA (40.38 ±1.56) groups. All STs significantly reduced the FS
values (P<.05). The upper and lower FS bounds were 140.7 ±17.07 and 60.66 ±6.31, respectively, set
by VG-C and GC-APA. Weibull distribution indicated that the untreated groups presented the highest
m values. Among the treated groups, BC-LI3W demonstrated superior reliability (m=14.04).

Conclusions. APA for LU, LI2W for VG and BC, and LI3W for GC and VE can be preferred. Although
APA increased the SR and provided more wettable surfaces, it caused considerable loss of FS.
Therefore, LI can be recommended as a safer ST for RMCs. (J Prosthet Dent 2022;127:928.e1-e8)
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computer-aided manufacture
(CAD-CAM) technology has
led to the rapid commerciali-
zation and diversification of
preprocessed blocks used in
the fabrication of indirect
restorations.1-4 Resin-matrix
ceramics (RMCs) have
become popular because of
their ease of machinability,2

good fatigue resistance,5-7

acceptable wear resistance,8

low abrasiveness to opposing
teeth,8 promising bond
strength, polishability,9 no-
firing requirement, intraoral
reparability, enhanced milling
damage tolerance, and good
marginal adaptation.2,10-15

Current RMCs can be
divided into those containing
a methacrylate-based matrix
with dispersed silanated
fillers (RMCDF) and those
containing a glass-ceramic
network, usually presin-
tered, that has been sila-

nated by capillary action and subsequently infiltrated
with a resin matrix (RMCPICN).8-10,16-18 Despite an
oversimplification, another classification was
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Clinical Implications
The choice of STs is dependent on the RMC type,
and each RMC can require a dedicated ST. For RMCs,
laser irradiation can be recommended as an
alternative to airborne-particle abrasion. However,
the choice of STs affects surface characterization
and mechanical features.
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RMCs offer different multifunctional monomers that
are radically polymerized to produce highly crosslinked
3D polymeric networks with engaging characteristics.19-23

These monomers have different ratios of C=C, present
variable degree of conversion (DC) levels, and are highly
potent in the determination of crosslink density and
elasticity of the network.19,20 The shorter the distance
between double bonds, the higher the crosslink density,
and this tends to decrease the probability of chain
reorganization, thereby increasing elasticity modulus.20

Moreover, the DC level of these monomers can affect
the degree of water sorption, mechanical properties, and
polymerization shrinkage.19-23

The industrial fabrication of RMCs results in better
homogeneity, a higher DC of double bonds, minimized
flaws and internal defects, and thereby, improved prop-
erties.10-26 However, relatively higher DC leads to
reduced free monomers for copolymerization with
monomers of the luting cement. Therefore, different
micromechanical surface treatments (STs) are required
on the intaglio surface of the RMCs before adhesive
cementation, to attain a durable bond.27 However, the
effect of different STs on the surface and mechanical
properties of RMCs is unclear.

Available micromechanical STs include airborne-
particle abrasion (APA) and laser irradiation with
different output powers (LI2W and LI3W). In both routes,
microretentive indentations are generated to increase
microroughness, enhance wettability, and facilitate a
strong bond by providing micromechanical inter-
locking.27-29 In APA, the surface is roughened by abrasive
particles.27 Although a well-established ST,24,30,31 it can
cause surface-damage31,32 or microcrack forma-
tion.24,33,34 Indentation pattern can be altered by
changing particle type and size, propulsion pressure,
nozzle proximity to the surface, and processing time.35 In
LI, the surface is roughened by removing the inorganic
content of the superficial layer with microexplosions and
vaporization.29 Surface topography can be altered by
changing laser type, power output, nozzle proximity to
the surface, and irradiation time.35 Although different
lasers have been used to roughen ceramics,33,35,36 the use
of the erbium, chromium-doped yttrium, scandium,
gallium, and garnet (Er,Cr:YSGG) laser has recently
Önöral et al
become popular,32,36-39 with a hydrokinetic output that
decreases the risk of forming a heat-damaged layer.29,36

Studies that evaluated the surface characterization
and mechanical performance of more recently developed
RMCs before and after different STs are scarce. There-
fore, the aim of the present study was to test the surface
characterization (surface roughness [SR] and water con-
tact angle [WCA]) and mechanical (flexural strength [FS])
features of different RMCs and to analyze how conducted
STs (APA, LI2W, and LI3W) would alter these features of
RMCs. The research hypotheses were that STs would
influence the SR, WCA, and FS of RMCs and that RMC
type would influence the SR, WCA, and FS.
MATERIAL AND METHODS

The experimental design and the materials used are
presented in Figure 1 and Table 1. Two hundred rect-
angular plates (14×12×1 mm) were wet-sliced (Micracut
201; Metkon) from 5 different RMC ingots, including a
polymer-infiltrated ceramic network (Vita Enamic [VE]),
2 resin nanoceramics (Lava Ultimate [LU], Grandio
Blocks [GB]), a flexible nanoparticle-filled resin (GC
Cerasmart [GC]), and a reinforced composite resin
(Brilliant Crios [BC]). One side of each plate was wet-
grounded for 15 seconds with 400-grit silicon carbide
abrasive paper on a grinding device (Gripo 2V; Metkon)
operating at 100 rpm. The final thickness was adjusted to
1 ±0.01 mm by measuring the plates with digital calipers
(Digimatic Caliper; Mitutoyo Corp).

Plates of each RMC group were further divided into 4
subgroups according to the STs applied: Control (C),
APA, LI2W, and LI3W. In the C group, plates remained
untouched. In the APA group, 50-mm aluminum oxide
(Al2O3) particles (Korox; Bego) were sprayed at the in-
taglio surface of each plate for 20 seconds at an air
pressure of 0.2 MPa from a distance of 10 mm. In the LI
groups, the MG6 sapphire tip of Er,Cr:YSGG laser
(Waterlase MD; Biolase) was circulated on the intaglio
surface of each plate for 20 seconds on a noncontact hard
tissue mode operating at 2 different energy levels (2W
and 3W), a repetition rate of 20 Hz, and a pulse duration
of 140 ms with water flow of 65% and airflow of 55%.

The SR (Ra) of each plate was recorded in mm with a
contact profilometer (Stylus surface roughness tester;
Time). Three consecutive measurements were made in
different directions by starting from the midpoint of the
intaglio surface of each plate at least 0.5 mm away from
each other. The profilometer was monitored with a
calibrator (SO) before measuring.

WCAs were determined by using the sessile drop
method. To the intaglio surface of each plate, a droplet of
distilled water was dribbled, and immediately after the
water contact, the tangent angle (q) at the 3-phase contact
point on a sessile drop profile was directly measured.
THE JOURNAL OF PROSTHETIC DENTISTRY
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Figure 1. Experimental design. APA, airborne-particle abrasion; LI-2W, laser irradiation with 2.0-Watt power; LI-3W, laser irradiation with 3.0-Watt power.
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A table-top universal tester (EZTest; Shimadzu Corp)
was employed to study the 3-point FS of the plates by
following the International Organization for Standardization
(ISO) 6872:200811 guideline. Each plate with a 45-degree
chamfer at major edges was positioned on the mecha-
nism. The treated surface of each plate was aligned down-
ward toward the tension side, and the untreated surface of
each plate was aligned upward toward the compression
side. Plates were loaded with 1 mm/min crosshead speed
until failure. FS values (s) in MPa were calculated over
fracture load data by using the following function:

s=
3PL

2wb2
;

where P=fracture load in Newton, L=length of test span
in mm, w=width of the plate in mm, and b=thickness of
the plate in mm. On the data of FS, Weibull statistics
were also conducted to determine the reliability of each
material. Failure probability was calculated by using the
following function (ISO 6872:2015):

Pf = 1−exp
��

−
s

s0

�m�
;

where Pf=failure probability, s=FS, s0=characteristic
strength at fracture probability of 63.21%, and
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m=Weibull modulus which is equal to the slope of the
ln(ln[1/(1-Pf)]) versus that in ln s plots.

All computations were performed by using a statistical
analysis software program (IBM SPSS Statistics, v23; IBM
Corp). The data normality was determined with the
Shapiro-Wilk test (P>.05), and therefore, parametric 2-
way analysis of variance (ANOVA) was conducted to
investigate the influence of 2 variables (RMC type and
ST) on each parameter (SR, WCA, and FS). The Tukey
post hoc test was used for multiple comparisons (a=.05).

RESULTS

The 2-way ANOVA showed that SR, WCA, and FS
values were significantly affected by all tested variables
and their interaction terms (P<.001). The mean SR, WCA,
and FS values with the Tukey post hoc test comparisons
are presented in Tables 2-4, respectively.

All STs significantly increased the SR values (P<.05).
The SR values ranked as follows: LI3W>APA>LI2W>C.
GC showed the highest (3.02 ±2.63) and VG exhibited
the lowest (1.21 ±0.88) SR values. Except for the differ-
ence between the BC and LU, the SR values of all RMCs
differed significantly from each other (P<.05). Consid-
ering the ST-material interaction, maximum and mini-
mum SR values were recorded in GC-LI3W (7.06 ±0.16)
Önöral et al



Table 2.Mean ±standard deviation of surface-roughness values (Ra) of RMCs treated with different surface treatments

Surface Treatments

RMC Materials

TotalVG BC GC LU VE

Control 0.17 ±0.05b,A 0.17 ±0.04c,A 0.07 ±0.02d,A 0.37 ±0.19c,A 0.34 ±0.17c,A 0.22 ±0.09d

APA 1.95 ±0.40a,B 2.11 ±0.38b,B 3.21 ±0.51b,A 2.28 ±0.21b,B 1.96 ±0.22b,B 2.30 ±0.34b

LI2W 0.71 ±0.10b,C 1.97 ±0.22b,AB 1.74 ±0.17c,AB 2.33 ±0.33b,A 1.62 ±0.26b,B 1.67 ±0.22c

LI3W 2.02 ±0.65a,E 4.57 ±1.06a,B 7.06 ±0.16a,A 3.77 ±0.56a,C 2.78 ±0.37a,D 4.04 ±0.56a

Total 1.21 ±0.88D 2.21 ±1.68B 3.02 ±2.63A 2.19 ±1.27B 1.68 ±0.92C 2.06 ±1.71

APA, airborne-particle abrasion; BC, Brilliant Crios; GC, GC Cerasmart; LI2W, laser irradiation with 2.0-Watt power; LI3W, laser irradiation with 3.0-Watt power; LU, Lava Ultimate; VE, Vita
Enamic; VG, Voco Grandio. Different uppercase letters indicate differences in same row; different lowercase letters indicate differences in same column for each RMC material.

Table 1. Resin-matrix ceramics used

Material Category of RMC Matrix (Organic Part)
Filler (wt

%) Filler (Inorganic Part) Manufacturer

Grandio
Block

RMCDF Methacrylate 86 ND VOCO GmbH

Brilliant Crios RMCDF Crosslinked methacrylate 70.7 SiO2: <20 nm, barium glass: <1.0 mm,
inorganic pigments (ferrous oxide or titanium dioxide)

Coltène

GC Cerasmart RMCDF Bis-MEPP, UDMA, DMA 71 Silica: 20 nm, barium glass: 300 nm GC Dental
Products

Lava Ultimate RMCDF Bis-GMA, UDMA, Bis-EMA,
TEGDMA

80 Silica (20 nm), zirconia (4-11 nm)
nanoparticles, and ZrO2-SiO2 nanoclusters

3M ESPE

Vita Enamic RMCPICN UDMA, TEGDMA 86 Glass-ceramic sintered network including
58-63% SiO2, 20-23% Al2O3, 9-11% Na2O, 4-6% K2O, and 0.1% ZrO2

VITA Zahnfabrik

Bis-EMA, ethoxylated bisphenol dimethacrylate; Bis-GMA, bisphenol-A-glycidyl methacrylate; Bis-MEPP, 2,2-Bis(4-methacryloxypolyethoxyphenyl) propane; DMA, dimethacrylate; NN,
nothing to declare; RMCDF, RMCs consisting dispersed fillers; RMCPICN, RMC consisting polymer infiltrated ceramic network; SiO2, silica; TEGDMA, triethylene glycol dimethacrylate; UDMA,
urethane dimethacrylate; wt, filler weight percentage.
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and GC-C (0.07 ±0.02) groups. Except for VG-LI2W, all
STs significantly increased the SR values (P<.05). The
differences between the SR values of the RMCs in the C
group were not significant. Among the APA-applied
RMCs, only GC showed a higher SR value than others
(P<.05). In both LI2W and LI3W groups, VG showed a
lower SR value than others (P<.05).

All STs significantly lowered the WCA values (P<.05).
The WCA values ranked as follows: C>LI2W>LI3W>APA.
LU (56.14 ±4.83) and BC (55.34 ±4.18) showed the
highest WCA values, while VE revealed the lowest WCA
value (50.31 ±6.61). Considering interaction, maximum
and minimum WCA values were recorded in LU-C
(61.74 ±2.45) and VE-APA (40.38 ±1.56) groups. Except
for BC-LI2W, all STs significantly reduced the WCA
values (P<.05). When the STs were compared, the WCA
values in the APA group were found to be significantly
lower (P<.05), excluding GC. The WCA values of the
RMCs in the C did not differ significantly from each
other, except for LU-VE. In the APA group, only VE
showed a significantly lower WCA value than other
RMCs (P<.05). In LI2W and LI3W, GC and VE materials
exhibited lower WCA values than others (P<.05).

All STs significantly reduced the FS values (P<.05).
While APA showed a significantly lower FS value than
the laser-treated groups (P<.05), there was no significant
difference between the FS values of the LI2W and LI3W

groups. FS values of the VG and BC were significantly
higher than those of GC, LU, and VE (P<.05).
Önöral et al
Considering interaction, the upper and lower FS bounds
were 140.7 ±17.07 and 60.66 ±6.31, respectively, set by
VG-C and GC-APA. Except for VE, APA significantly
decreased the FS values of all RMCs (P<.05). LI2W and
LI3W did not cause significant differences in FS values,
except for LU-LI2W, VG-LI3W, and LU-LI3W groups
(P<.05).

According to Weibull distribution (Table 5), m values
of all experimental groups were ranging from 6.2 to
14.92, and the highest m value (14.92 ±0.35) was calcu-
lated for BC-Control. The untreated groups presented
the highest m and s0 values. Among the treated groups,
BC-LI3W offered superior reliability (m=14.04 ±0.33)
(Fig. 2).
DISCUSSION

Both research hypotheses were accepted as the results
indicated that material type, ST, and their interaction
terms led to significant alterations in all tested charac-
teristics. Among nontreated RMCs, LU demonstrated the
highest SR value, a finding that can be attributed to
factors including that LU is composed of nanoparticles
and aggregated nanoclusters, accordingly providing
shape diversity.8,9 Alamoush et al10 depicted a wide
range of filler sizes for nontreated LU in scanning elec-
tron micrographs. It has been reported that SR can be
affected by filler particle size and shape, percentage of
surface area occupied by fillers, and variation in the
THE JOURNAL OF PROSTHETIC DENTISTRY



Table 3.Mean ±standard deviation of water contact angle values (q) of RMCs treated with different surface treatments

Surface Treatments

RMC Materials

TotalVG BC GC LU VE

Control 59.10 ±2.81a,AB 59.84 ±2.38a,AB 59.79 ±1.78a,AB 61.74 ±2.45a,A 56.87 ±3.17a,B 59.47 ±2.52a

APA 49.20 ±2.20c,A 50.39 ±2.81c,A 50.41 ±1.90b,A 49.62 ±2.13c,A 40.38 ±1.56c,B 45.00 ±2.12d

LI2W 54.54 ±1.92b,AB 57.03 ±2.02ab,A 49.71 ±2.66b,C 57.09 ±2.17b,A 52.64 ±2.47b,BC 54.20 ±2.25b

LI3W 53.61 ±1.77b,AB 54.11 ±1.91b,AB 48.91 ±2.43b,C 56.09 ±1.67b,A 51.34 ±2.44b,BC 52.81 ±2.04c

Total 54.11 ±4.15B 55.34 ±4.18A,B 52.20 ±4.95C 56.14 ±4.83A 50.31 ±6.61D 53.62 ±5.41

APA, airborne-particle abrasion; BC, Brilliant Crios; GC, GC Cerasmart; LI2W, laser irradiation with 2.0-Watt power; LI3W, laser irradiation with 3.0-Watt power; LU, Lava Ultimate; VE, Vita
Enamic; VG, Voco Grandio. Different uppercase letters indicate differences in same row; different lowercase letters indicate differences in same column for each RMC material.

Table 4.Mean ±standard deviation of flexural strength values (MPa) of RMCs treated with different surface treatments

Surface Treatments

RMC Materials

TotalVG BC GC LU VE

Control 140.7 ±17.07a,A 123.59 ±9.50a,A 95.19 ±9.12a,B,C 102.47 ±8.57a,B 82.88 ±6.72a,C 108.97 ±10.20a

APA 86.03 ±15.88c,A 89.75 ±12.93b,A 60.66 ±6.31b,B 74 ±8.90b,A,B 76.06 ±9.15a,A,B 77.3 ±10.63c

LI2W 135.19 ±18.94a,b,A 124.09 ±12.94a,A 83.10 ±15.35a,B 72.25 ±6.88b,B 75.28 ±7.16a,B 97.98 ±12.25b

LI3W 121.13 ±16.44b,A 122 ±10.13a,A 89.47 ±12.16a,B 71.41 ±9.80b,B 78.75 ±8.81a,B 96.55 ±11.47b

Total 120.76 ±27.11A 114.86 ±18.38A 82.11 ±17.11B 80.03 ±15.53B 78.24 ±8.28B 95.20 ±26

APA, airborne-particle abrasion; BC, Brilliant Crios; GC, GC Cerasmart; LI2W, laser irradiation with 2.0-Watt power; LI3W, laser irradiation with 3.0-Watt power; LU, Lava Ultimate; VE, Vita
Enamic; VG, Voco Grandio. Different uppercase letters indicate differences in same row; different lowercase letters indicate differences in same column for each RMC material.
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interparticle spacing.40 Second, the Bis-GMA monomer
found only in LU may have been effective in offering the
highest SR value. In Bis-GMA, the hydroxyl groups on
the backbone and the p-p coactions given by the aro-
matic rings give rise to the increased viscosity and cause
the polymer to remain at a low DC level (39%). Its lower
DC ratio tends to change the surface characterization25,41

as SR is also dependent on DC level.40 Among non-
treated RMCs, the lowest SR value belongs to the GC.
This can chiefly be attributed to its nanometer-sized filler
particles. It is well-known that fillers of smaller size can
be adhered to the resin matrix, thus depicting a smoother
surface finish.40 Also, fillers in GC do not offer shape
diversity like LU.8,9

In all surface-treated RMCs, VE and VG demon-
strated relatively lower SR values. This can be translated
to that the SRs of VE and VG were less altered after STs
and correlated with their high microhardness values.
Alamoush et al10 reported microhardness values of 203.1
kg/mm2 for VE and 121.8 kg/mm2 for VG. When STs are
applied, a rough transformed zone is formed on the
surface of the material depending on its hardness, and
stiff structures prevent the deepening of this transformed
zone. The stiffness of the VE can also be related to its
monomeric structure. TEGDMA copolymer is combined
with UDMA in VE and has been recommended to be
used as a reactive diluent because of its lower molecular
weight (286.3) and lower viscosity that aids in filler
incorporation and permits the polymeric network to
reach a higher DC level (75.7%).19,20,42 TEGDMA also
has the highest concentration of double bonds offering
the highest crosslink density and ability to form the
tightest networks. The least decrease in SR values after
THE JOURNAL OF PROSTHETIC DENTISTRY
APA was also observed in VE. Al2O3 abrasive particles
presumably are less effective on the surface of VE
because of its increased microhardness.10 In the APA and
LI3W groups, the highest SR value was for the GC; while
in the LI2W group, the highest SR value was for LU. Both
findings can be explained by the fact that they are 2
nanoceramics43 included in this study, and their
nanometer-sized filler particles might be more suscepti-
ble to STs. The maximum SR values were observed in
RMCs treated with LI3W, followed by APA and LI2W. The
slightest change affecting the inorganic portion caused a
substantial alteration in surface roughness, and LI3W

provided increased alteration.
A goniometer and the direct imaging sessile drop

method have been used to monitor the wettability of a
surface.12,44,45 The present study demonstrated that in
the C group, LU and VE showed the highest and lowest
WCAs, respectively, possibly because these materials
have the highest SR values among the C group mea-
surements. However, among treated RMCs, no correla-
tion was observed between SR and WCA. Consistently,
Sturz et al46 and Çakmak et al12 did not find a correlation
between WCA and SR values and reported that the
microchemical structure of the material, alterations in
matrix composition and filler fraction, and inhomoge-
neous surface caused by the fillers contribute to this
finding. All STs, specifically APA, reduced WCAs.

Initially, it was thought that nontreated VE would
offer higher FS values as it contains very flexible UDMA
in its microstructure.14 UDMA-containing homopolymer
has been reported to have the highest FS value,19 which
strengthened this argument. Moreover, Albero et al1 re-
ported consistent results. However, VE has a distinct
Önöral et al



Table 5.Weibull distribution of all experimental groups

RMC Type Surface Treatments M 95%CI for m s0 95%CI for s0 Regression Coefficient

VG Control 9.29 ±0.16 9.13-9.37 153.07 ±14.83 142.46-163.67 0.87

APA 6.43 ±0.10 6.36-6.50 92.76 ±7.13 87.67-97.86 0.86

LI2W 8.25 ±0.13 8.13-8.31 146.64 ±12.33 137.83-155.45 0.88

LI3W 8.62 ±0.15 8.47-8.69 131.59 ±12.38 122.74-140.43 0.86

BC Control 14.92 ±0.35 14.52-15.02 135.38 ±16.60 123.48-147.21 0.94

APA 7.99 ±0.12 7.88-8.05 97.21 ±7.00 92.20-102.21 0.91

LI2W 11.29 ±0.22 11.04-11.36 135.34 ±14.52 125.00-145.76 0.91

LI3W 14.04 ±0.33 13.68-14.15 133.55 ±16.38 121.84-145.26 0.90

GC Control 12.11 ±0.26 11.82-12.19 103.90 ±10.94 96.09-111.72 0.94

APA 11.41 ±0.24 11.13-11.48 66.11 ±6.36 61.57-70.66 0.97

LI2W 6.2 ±0.04 6.17-6.23 89.21 ±2.43 87.47-90.94 0.98

LI3W 8.06 ±0.11 7.95-8.10 96.87 ±5.79 92.74-101.01 0.95

LU Control 14.1 ±0.33 13.72-14.19 112.14 ±13.64 102.39-121.88 0.93

APA 9.64 ±0.17 9.45-9.70 80.44 ±6.83 75.57-85.32 0.94

LI2W 12.42 ±0.27 12.11-12.49 78.84 ±7.95 73.16-84.53 0.98

LI3W 8.43 ±0.15 8.28-8.50 77.48 ±6.20 73.05-81.90 0.89

VE Control 14.59 ±0.35 14.19-14.69 90.65 ±10.35 83.26-98.05 0.99

APA 9.86 ±0.17 9.67-9.91 82.67 ±6.66 77.91-87.43 0.97

LI2W 12.51 ±0.28 12.19-12.59 82.18 ±8.56 76.06-88.29 0.97

LI3W 10.11 ±0.18 9.91-10.17 85.65 ±6.85 80.75-90.64 0.96

95%CI for the m, confidence intervals for Weibull modulus; 95%CI for s0, confidence intervals for characteristic strength; s0, characteristic strength; APA, airborne-particle abrasion; BC,
Brilliant Crios; GC, GC Cerasmart; LI2W, laser irradiation with 2.0-Watt power; LI3W, laser irradiation with 3.0-Watt power; LU, Lava Ultimate; m, Weibull modulus; VE, Vita Enamic; VG, Voco
Grandio.
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fabrication manner, and this makes the material
completely different from others. A continuous inter-
penetrating inorganic phase is responsible for the stiff-
ening of VE.43 Supportively, in a previous study,10 VE
presented a very high microhardness value. It is thought
that this structural stiffness deteriorates the flexion ability
and thereby reduces the FS of the material. TEGDMA
contained in VE might also contribute to this finding as it
increases water sorption, deteriorates general mechanical
properties, and increases polymerization shrinkage
because of the increased DC level.19,41 Additionally, the
present study found that LU has an average FS among all
nontreated RMCs. This is the result of the interplay
among antagonistic factors. On one side, the presence of
Bis-GMA decreases FS because of the lower DC and
crosslink density. On the other side, the stiff backbone of
Bis-GMA and strong hydrogen bonding which maintains
the conformity of the network structure tend to increase
polymer strength.42 The highest FS values were found for
VG and BC, which is possible because of the organic
matrix consisting entirely of methacrylate. Other RMCs
are composed of dimethacrylate monomers. Among STs,
APA was found highly effective on the decrease of FS
values. This might be explained by the abrasiveness of
the APA which removes not only the organic but also the
inorganic portion of the RMCs, but LI is effective only on
the inorganic portion and can be regarded as a safer ST.

Weibull analysis measures the structural reliability of
the FS of the experimental groups by m and s0. The m
value depicts the structural homogeneity of the material
Önöral et al
considering the strength distribution. As m increases, the
reliability of the material increases.1,14 Different ceramics
exhibit m values ranging from 5 to 15. The s0 presents
the strength value by which 63% of the tested specimens
would fracture.13 The untreated RMCs presented the
highest m and s0 values, indicating STs may endanger
structural reliability. Moreover, VG-APA and GC-LI2W were
the 2 groups demonstrating the lowest m values, translating
that they may not be the most suitable groups for restora-
tions in stress-bearing areas. The s0 of VG-C is different
from the rest. A greater force (a force between 142.46 and
163.67 MPa) is required to have the same probability of
fracture as other experimental groups (Table 5).

Limitations of this study included that a single ma-
terial group (RMC) was studied. Different material
groups may present different results. Second, only WCA
was evaluated. However, the calculation of surface en-
ergy might alter the findings. Third, surface topography
assessment with a scanning electron microscope was not
performed. Therefore, future studies are needed to better
assess the clinical performance of RMCs.

CONCLUSIONS

Based on the findings of this in vitro study, the following
conclusions were drawn:

1. Surface treatment, RMC material type, and their
interaction terms had a significant influence on the
surface roughness, water contact angle, and flexural
strength data.
THE JOURNAL OF PROSTHETIC DENTISTRY
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2. The surface roughness of untreated RMCs was
similar. LI3W exhibited the highest surface rough-
ness values.

3. The wettability of RMCs was mostly enhanced after
airborne-particle abrasion.

4. The most substantial decrease in flexural strength
values occurred after airborne-particle abrasion. In
Vita Enamic, the surface treatments did not affect
flexural strength. In all surface treatments, the
flexural strength values of Voco Grandio and Bril-
liant Crios were higher than those of other RMCs.

REFERENCES

1. Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization
of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent
2015;7:e495-500.
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